- ํ๊ท๋ถ์์์ ๋ณ์ ๊ฐ์ ์ธ๊ณผ๊ด๊ณ๋ฅผ ๋ถ์ํ๊ธฐ ์ ์ ๋ณ์ ๊ฐ์ ๊ด๋ จ์ฑ์ ๋ถ์ํ๋ ์ ํ์๋ฃ(๊ฐ์ค๊ฒ์ ์ ์ํ)๋ก ์ด
- ๋ณ์ ๊ฐ์ ๊ด๋ จ์ฑ์ ์๊ด๊ณ์์ธ ํผ์ด์จ(Pearson) R ๊ณ์๋ฅผ ์ด์ฉํด ๊ด๋ จ์ฑ์ ์ ๋ฌด์ ์ ๋๋ฅผ ํ์
- ์๊ด๊ด๊ณ ๋ถ์์ ์ฒ๋์ธ ํผ์ด์จ ์๊ด๊ณ์(Pearson correlation coefficient : r) R๊ณผ ์๊ด๊ด๊ณ์ ์ ๋
ํผ์ด์จ ์๊ด๊ณ์ R
+-0.9์ด์ > ๋งค์ฐ ๋์ ์๊ด๊ด๊ณ
+-0.9 ~ +-0.7 > ๋์ ์๊ด๊ด๊ณ
+-0.7 ~ +-0.4 > ๋ค์ ๋์ ์๊ด๊ด๊ณ
+-0.4 ~ +-0.2 > ๋ฎ์ ์๊ด๊ด๊ณ
+-0.2๋ฏธ๋ง > ์๊ด๊ด๊ณ ์์
weather = read.csv("../data/weather.csv", stringsAsFactors = F)
# ๋ฐ์ดํฐ ํ์ธ
weather
## Date MinTemp MaxTemp Rainfall Sunshine WindGustDir WindGustSpeed
## 1 2014-11-01 8.0 24.3 0.0 6.3 NW 30
## 2 2014-11-02 14.0 26.9 3.6 9.7 ENE 39
## 3 2014-11-03 13.7 23.4 3.6 3.3 NW 85
## 4 2014-11-04 13.3 15.5 39.8 9.1 NW 54
## 5 2014-11-05 7.6 16.1 2.8 10.6 SSE 50
## 6 2014-11-06 6.2 16.9 0.0 8.2 SE 44
## 7 2014-11-07 6.1 18.2 0.2 8.4 SE 43
## 8 2014-11-08 8.3 17.0 0.0 4.6 E 41
## 9 2014-11-09 8.8 19.5 0.0 4.1 S 48
## 10 2014-11-10 8.4 22.8 16.2 7.7 E 31
## 11 2014-11-11 9.1 25.2 0.0 11.9 N 30
## 12 2014-11-12 8.5 27.3 0.2 12.5 E 41
## 13 2014-11-13 10.1 27.9 0.0 13.0 WNW 30
## 14 2014-11-14 12.1 30.9 0.0 12.4 NW 44
## 15 2014-11-15 10.1 31.2 0.0 13.1 NW 41
## 16 2014-11-16 12.4 32.1 0.0 11.1 E 46
## 17 2014-11-17 13.8 31.2 0.0 8.4 ESE 44
## 18 2014-11-18 11.7 30.0 1.2 10.1 S 52
## 19 2014-11-19 12.4 32.3 0.6 13.0 E 39
## 20 2014-11-20 15.6 33.4 0.0 10.4 NE 33
## 21 2014-11-21 15.3 33.4 0.0 9.5 WNW 59
## 22 2014-11-22 16.4 19.4 0.4 0.0 E 26
## 23 2014-11-23 12.8 18.5 25.8 0.6 ESE 28
## 24 2014-11-24 12.0 24.3 0.4 7.5 NNE 26
## 25 2014-11-25 15.4 28.4 0.0 8.1 ENE 33
## 26 2014-11-26 15.6 26.9 0.0 8.9 E 41
## 27 2014-11-27 13.3 22.2 0.2 2.3 ENE 39
## 28 2014-11-28 12.9 28.0 0.0 10.7 S 52
## 29 2014-11-29 15.1 24.3 0.0 0.4 SE 39
## 30 2014-11-30 13.6 24.1 0.4 0.5 NNW 30
## 31 2014-12-01 15.1 20.4 22.6 0.2 SSE 41
## 32 2014-12-02 11.6 26.3 4.2 12.0 NNE 41
## 33 2014-12-03 16.6 24.2 0.2 4.7 NW 50
## 34 2014-12-04 13.3 26.5 6.6 11.8 NW 50
## 35 2014-12-05 14.5 21.8 0.0 9.8 ENE 43
## 36 2014-12-06 16.3 26.8 0.0 6.3 ENE 39
## 37 2014-12-07 17.2 25.8 0.0 8.8 SW 41
## 38 2014-12-08 16.5 28.2 4.0 8.8 NE 39
## 39 2014-12-09 15.0 29.4 0.0 11.1 NW 43
## 40 2014-12-10 14.9 24.8 0.0 10.0 NNW 35
## 41 2014-12-11 11.8 18.5 0.6 2.3 ENE 35
## 42 2014-12-12 11.7 21.5 0.0 7.3 ENE 41
## 43 2014-12-13 9.6 20.3 0.0 3.6 SE 39
## 44 2014-12-14 8.9 27.1 0.0 12.7 E 35
## 45 2014-12-15 10.1 29.9 0.0 8.8 E 41
## 46 2014-12-16 15.5 21.1 5.4 0.9 S 31
## 47 2014-12-17 10.8 21.7 1.4 10.6 ESE 48
## 48 2014-12-18 7.5 20.9 0.0 8.7 ENE 39
## 49 2014-12-19 12.8 21.0 0.0 0.8 NE 22
## 50 2014-12-20 12.6 23.1 3.4 2.3 NNW 30
## 51 2014-12-21 14.8 29.5 6.4 8.1 N 41
## 52 2014-12-22 19.9 22.0 11.0 5.9 NNW 76
## 53 2014-12-23 9.2 20.4 17.4 10.2 ENE 39
## 54 2014-12-24 12.4 24.4 0.0 12.1 NW 44
## 55 2014-12-25 11.3 21.7 3.4 5.6 E 41
## 56 2014-12-26 9.8 26.3 0.0 13.0 NNW 41
## 57 2014-12-27 14.3 26.7 0.0 7.1 NNW 65
## 58 2014-12-28 15.1 28.3 14.4 13.2 NNW 28
## 59 2014-12-29 14.4 31.6 0.0 13.6 NNW 30
## 60 2014-12-30 15.4 35.0 0.0 13.0 E 39
## 61 2014-12-31 13.8 33.5 0.0 13.6 NE 31
## 62 2015-01-01 13.6 34.2 0.0 12.8 NNE 35
## 63 2015-01-02 14.3 35.0 0.0 10.5 ESE 41
## 64 2015-01-03 15.9 23.4 0.0 2.2 ESE 50
## 65 2015-01-04 16.7 25.3 0.0 12.5 ESE 46
## 66 2015-01-05 12.1 27.5 0.0 11.7 NE 35
## 67 2015-01-06 14.3 34.1 0.0 10.5 ENE 39
## 68 2015-01-07 16.5 33.9 0.0 12.6 ENE 39
## 69 2015-01-08 16.5 30.3 0.0 8.1 E 46
## 70 2015-01-09 17.5 29.9 0.0 8.8 E 43
## 71 2015-01-10 14.7 34.2 0.0 12.8 NE 33
## 72 2015-01-11 17.5 35.8 0.0 13.3 SSE 57
## 73 2015-01-12 20.9 35.7 0.0 6.9 SW 50
## 74 2015-01-13 17.0 33.8 2.0 13.5 WNW 52
## 75 2015-01-14 16.0 22.8 0.0 6.0 E 50
## 76 2015-01-15 15.4 33.8 0.0 11.1 W 35
## 77 2015-01-16 17.9 33.2 0.0 8.4 N 59
## 78 2015-01-17 15.2 25.1 4.8 11.6 E 46
## 79 2015-01-18 15.1 20.4 0.0 0.1 ESE 39
## 80 2015-01-19 15.3 19.6 18.8 0.0 NE 33
## 81 2015-01-20 17.2 24.7 12.2 8.1 NW 50
## 82 2015-01-21 15.9 19.9 0.8 1.6 E 48
## 83 2015-01-22 10.0 22.5 0.0 11.6 E 33
## 84 2015-01-23 9.9 24.4 0.0 10.8 NE 28
## 85 2015-01-24 10.3 27.8 0.0 9.9 ENE 35
## 86 2015-01-25 15.4 25.7 0.0 8.2 E 41
## 87 2015-01-26 12.7 28.8 0.0 9.0 NNE 28
## 88 2015-01-27 13.2 31.3 0.0 11.6 WSW 46
## 89 2015-01-28 15.3 33.2 0.0 13.2 NNW 44
## 90 2015-01-29 17.9 33.9 0.0 11.8 ENE 46
## 91 2015-01-30 18.0 34.9 0.0 9.9 NW 69
## 92 2015-01-31 17.6 27.8 5.2 3.6 ESE 39
## 93 2015-02-01 16.0 23.8 2.2 6.2 SSE 30
## 94 2015-02-02 14.9 28.8 0.0 8.1 NNE 30
## 95 2015-02-03 17.1 29.6 0.0 9.2 E 48
## 96 2015-02-04 18.2 22.6 1.8 0.0 ENE 33
## 97 2015-02-05 16.8 22.8 9.0 0.3 ESE 30
## 98 2015-02-06 13.6 27.4 1.0 8.0 W 52
## 99 2015-02-07 14.5 24.2 0.0 5.9 SSW 61
## 100 2015-02-08 12.4 19.9 16.2 5.6 ENE 41
## 101 2015-02-09 10.4 20.9 0.0 8.9 SSE 33
## 102 2015-02-10 9.1 23.1 0.0 9.6 ENE 41
## 103 2015-02-11 8.9 26.0 0.0 10.7 NE 31
## 104 2015-02-12 14.5 24.2 4.4 5.9 W 48
## 105 2015-02-13 12.6 18.2 11.0 0.4 ENE 30
## 106 2015-02-14 8.6 24.2 0.2 12.7 E 33
## 107 2015-02-15 10.8 25.2 0.0 12.6 ENE 35
## 108 2015-02-16 11.2 26.1 0.0 12.6 ENE 39
## 109 2015-02-17 12.1 24.1 0.0 10.2 ENE 46
## 110 2015-02-18 10.8 25.8 0.0 11.7 E 31
## 111 2015-02-19 11.4 27.1 0.0 12.1 NE 33
## 112 2015-02-20 12.0 28.9 0.0 8.2 ESE 39
## 113 2015-02-21 16.3 24.8 1.8 3.8 S 50
## 114 2015-02-22 12.7 28.6 6.6 8.6 W 50
## 115 2015-02-23 12.7 25.1 0.0 12.4 NW 46
## 116 2015-02-24 12.0 23.8 0.0 12.4 NW 44
## 117 2015-02-25 11.5 25.9 0.0 10.2 ENE 44
## 118 2015-02-26 13.0 28.2 0.0 11.6 NW 44
## 119 2015-02-27 11.7 27.6 0.0 8.1 W 48
## 120 2015-02-28 14.8 17.3 0.0 0.8 SSE 48
## 121 2015-03-01 7.7 18.4 10.4 12.0 S 48
## 122 2015-03-02 4.4 21.8 0.0 12.1 S 35
## 123 2015-03-03 7.4 24.4 0.0 11.6 E 35
## 124 2015-03-04 8.3 27.3 0.0 10.1 E 35
## 125 2015-03-05 10.1 28.2 0.0 7.3 ESE 39
## 126 2015-03-06 12.0 27.6 0.0 11.0 E 46
## 127 2015-03-07 12.9 31.8 0.0 11.3 WSW 41
## 128 2015-03-08 10.8 29.2 0.0 7.5 E 50
## 129 2015-03-09 9.5 27.4 3.0 11.5 NNW 24
## 130 2015-03-10 12.1 27.8 0.0 11.5 E 41
## 131 2015-03-11 12.5 31.7 0.0 11.2 WNW 24
## 132 2015-03-12 13.9 34.7 0.0 8.5 SSW 46
## 133 2015-03-13 13.3 31.7 0.2 11.0 WNW 44
## 134 2015-03-14 13.2 33.1 0.0 9.7 ENE 39
## 135 2015-03-15 12.3 33.8 0.0 11.3 W 22
## 136 2015-03-16 13.8 35.2 0.0 11.2 SE 48
## 137 2015-03-17 11.3 32.3 0.0 11.4 NE 28
## 138 2015-03-18 11.7 30.2 0.0 11.2 NE 33
## 139 2015-03-19 12.5 29.9 0.0 10.7 NW 43
## 140 2015-03-20 15.1 26.2 0.0 9.8 NE 31
## 141 2015-03-21 11.5 29.3 0.0 8.0 NW 46
## 142 2015-03-22 13.0 14.8 0.0 0.0 SE 30
## 143 2015-03-23 11.6 19.6 0.0 1.6 E 33
## 144 2015-03-24 12.8 24.9 0.0 6.2 ENE 30
## 145 2015-03-25 15.5 22.4 0.6 1.9 NW 28
## 146 2015-03-26 13.1 17.4 6.4 0.0 NNW 43
## 147 2015-03-27 12.6 20.2 19.8 9.1 W 46
## 148 2015-03-28 4.4 18.3 0.0 9.6 N 33
## 149 2015-03-29 4.4 18.2 0.0 11.0 W 31
## 150 2015-03-30 7.1 18.5 0.0 10.0 NW 57
## 151 2015-03-31 4.2 18.9 0.0 10.8 WNW 50
## 152 2015-04-01 9.6 18.8 0.0 10.0 WNW 57
## 153 2015-04-02 3.5 21.8 0.0 10.3 NNW 22
## 154 2015-04-03 5.3 23.3 0.0 5.6 NNW 83
## 155 2015-04-04 7.0 14.3 2.6 9.7 WNW 63
## 156 2015-04-05 0.4 18.9 0.0 9.6 N 22
## 157 2015-04-06 3.2 21.4 0.0 10.6 E 26
## 158 2015-04-07 5.9 21.8 0.0 9.3 E 35
## 159 2015-04-08 8.1 20.5 0.0 7.8 ENE 31
## 160 2015-04-09 6.9 18.9 0.0 4.1 ESE 39
## 161 2015-04-10 5.6 19.5 0.0 6.8 SW 17
## 162 2015-04-11 7.2 22.9 0.0 9.5 E 26
## 163 2015-04-12 7.1 23.4 0.0 10.2 ESE 39
## 164 2015-04-13 6.1 24.1 0.0 6.1 WNW 35
## 165 2015-04-14 7.1 19.8 2.0 7.7 W 39
## 166 2015-04-15 5.6 18.0 5.2 9.3 S 31
## 167 2015-04-16 5.4 20.7 0.0 10.8 SSE 28
## 168 2015-04-17 6.3 19.3 0.0 10.6 S 31
## 169 2015-04-18 5.3 21.0 0.0 6.3 WNW 26
## 170 2015-04-19 7.9 19.7 0.0 8.3 ESE 48
## 171 2015-04-20 8.4 16.1 0.0 4.9 SE 35
## 172 2015-04-21 8.1 18.7 0.0 7.1 ESE 33
## 173 2015-04-22 2.4 20.6 0.0 10.1 E 30
## 174 2015-04-23 5.6 18.9 0.0 8.0 SE 33
## 175 2015-04-24 7.5 19.0 0.0 6.8 ENE 26
## 176 2015-04-25 2.5 21.2 0.0 7.9 NE 28
## 177 2015-04-26 5.0 20.9 0.0 8.9 WNW 22
## 178 2015-04-27 3.8 21.7 0.2 6.5 NW 44
## 179 2015-04-28 7.9 18.7 0.0 5.8 NW 59
## 180 2015-04-29 4.3 11.3 7.2 5.6 W 57
## 181 2015-04-30 -2.1 13.8 0.2 9.5 NNW 22
## 182 2015-05-01 -1.8 14.8 0.0 7.0 N 28
## 183 2015-05-02 3.8 13.8 0.0 0.8 WNW 31
## 184 2015-05-03 2.1 17.3 0.0 9.2 W 43
## 185 2015-05-04 0.5 17.1 0.0 9.4 NW 31
## 186 2015-05-05 -0.9 16.7 0.0 9.3 NNW 30
## 187 2015-05-06 0.4 19.0 0.0 8.3 NW 39
## 188 2015-05-07 7.5 16.8 0.0 3.0 NW 41
## 189 2015-05-08 8.3 17.6 0.0 9.4 WNW 43
## 190 2015-05-09 -0.2 18.1 0.0 9.4 NW 24
## 191 2015-05-10 0.1 21.0 0.0 9.2 NNW 17
## 192 2015-05-11 1.5 20.9 0.0 9.3 NW 20
## 193 2015-05-12 8.3 17.4 0.0 1.6 E 20
## 194 2015-05-13 9.4 19.2 0.0 7.7 <NA> 24
## 195 2015-05-14 1.3 19.0 0.0 9.4 NNW 30
## 196 2015-05-15 2.2 18.6 0.0 9.2 NNW 31
## 197 2015-05-16 -0.4 17.9 0.0 8.7 NW 33
## 198 2015-05-17 4.5 16.0 1.8 4.3 NW 35
## 199 2015-05-18 7.9 12.3 1.0 1.7 NW 52
## 200 2015-05-19 4.3 14.1 0.8 8.8 NW 41
## 201 2015-05-20 -2.7 18.1 0.0 9.3 W 52
## 202 2015-05-21 0.3 17.0 0.0 5.6 WNW 31
## 203 2015-05-22 3.8 17.4 0.0 7.3 E 24
## 204 2015-05-23 2.4 14.7 0.0 9.2 ESE 20
## 205 2015-05-24 1.2 14.8 0.0 6.7 SE 17
## 206 2015-05-25 1.2 14.5 0.0 8.9 SE 17
## 207 2015-05-26 -0.3 17.5 0.0 8.4 W 39
## 208 2015-05-27 4.7 18.5 3.8 5.1 ESE 22
## 209 2015-05-28 4.9 18.1 5.2 8.5 NNW 22
## 210 2015-05-29 1.4 16.8 0.0 8.2 NW 20
## 211 2015-05-30 2.2 17.5 0.2 8.5 NW 20
## 212 2015-05-31 -0.1 18.0 0.0 8.6 <NA> NA
## 213 2015-06-01 -0.9 18.5 0.0 8.9 E 22
## 214 2015-06-02 0.6 14.0 0.0 2.7 NE 17
## 215 2015-06-03 4.6 15.7 0.0 0.6 NNE 15
## 216 2015-06-04 9.8 14.4 0.8 0.0 ESE 20
## 217 2015-06-05 10.6 15.1 3.8 2.6 SSE 41
## 218 2015-06-06 7.8 15.1 0.0 2.7 S 31
## 219 2015-06-07 4.4 16.7 0.0 9.0 S 22
## 220 2015-06-08 -0.2 15.5 0.0 9.0 NE 28
## 221 2015-06-09 4.3 14.5 0.0 3.0 E 30
## 222 2015-06-10 7.4 16.3 0.0 NA NNE 30
## 223 2015-06-11 8.6 13.7 6.2 0.0 NW 31
## 224 2015-06-12 10.2 15.0 4.8 0.5 NW 46
## 225 2015-06-13 7.3 16.4 0.2 8.5 NW 43
## 226 2015-06-14 8.7 13.0 0.6 7.1 WNW 54
## 227 2015-06-15 1.0 11.8 0.0 7.2 S 48
## 228 2015-06-16 2.1 14.7 0.0 8.2 S 43
## 229 2015-06-17 6.4 16.9 0.0 5.9 SSW 26
## 230 2015-06-18 5.4 15.5 0.0 5.8 NNE 20
## 231 2015-06-19 0.4 15.5 0.0 4.7 N 13
## 232 2015-06-20 4.0 15.9 0.0 2.0 NNW 17
## 233 2015-06-21 8.4 11.7 4.8 0.0 W 26
## 234 2015-06-22 0.4 13.9 0.6 7.7 WNW 41
## 235 2015-06-23 4.2 14.0 0.0 7.6 NW 33
## 236 2015-06-24 0.9 12.9 0.0 6.8 NW 24
## 237 2015-06-25 0.8 13.0 0.0 4.1 WNW 41
## 238 2015-06-26 4.3 12.6 0.0 9.0 NW 46
## 239 2015-06-27 6.3 11.8 0.0 6.5 WNW 63
## 240 2015-06-28 3.5 14.3 0.0 8.9 NNW 35
## 241 2015-06-29 -1.5 14.8 0.0 8.0 NW 15
## 242 2015-06-30 1.2 16.0 0.0 6.1 NNW 31
## 243 2015-07-01 0.5 15.4 0.0 6.4 W 70
## 244 2015-07-02 5.3 11.7 2.0 5.6 NW 78
## 245 2015-07-03 6.6 13.1 0.2 8.2 WNW 61
## 246 2015-07-04 -1.6 11.5 0.0 8.9 N 31
## 247 2015-07-05 -3.1 12.0 0.0 3.9 ESE 35
## 248 2015-07-06 -0.1 14.2 0.0 7.0 W 13
## 249 2015-07-07 -0.6 14.0 0.0 7.1 NW 41
## 250 2015-07-08 3.0 11.1 0.8 0.2 W 35
## 251 2015-07-09 2.9 9.5 16.8 6.5 NW 35
## 252 2015-07-10 -1.3 8.8 0.0 2.8 WNW 39
## 253 2015-07-11 1.8 8.7 0.0 1.2 NW 65
## 254 2015-07-12 2.9 8.4 1.6 7.7 NW 59
## 255 2015-07-13 -2.6 11.1 0.2 6.5 N 20
## 256 2015-07-14 0.5 11.0 0.0 0.9 NNW 31
## 257 2015-07-15 2.7 16.5 0.0 8.9 NNW 41
## 258 2015-07-16 -1.7 13.6 0.0 5.2 NNW 28
## 259 2015-07-17 -0.9 12.8 0.2 1.9 N 17
## 260 2015-07-18 -1.8 11.5 0.0 4.7 NNW 41
## 261 2015-07-19 1.3 10.6 0.0 5.6 NW 46
## 262 2015-07-20 2.4 11.6 1.2 8.1 NW 35
## 263 2015-07-21 -1.1 11.0 0.2 0.0 WNW 41
## 264 2015-07-22 2.3 11.6 19.2 7.5 WNW 54
## 265 2015-07-23 -2.2 11.6 0.0 9.2 S 39
## 266 2015-07-24 -3.5 11.2 0.0 7.7 ESE 26
## 267 2015-07-25 -1.0 12.2 0.0 8.4 ESE 30
## 268 2015-07-26 -2.1 12.9 0.0 8.1 S 31
## 269 2015-07-27 -2.0 11.3 0.2 5.9 WNW 33
## 270 2015-07-28 -2.3 9.7 0.0 1.9 SSE 28
## 271 2015-07-29 -1.6 10.7 1.4 9.1 S 59
## 272 2015-07-30 0.8 12.2 0.0 8.6 <NA> NA
## 273 2015-07-31 -2.8 12.2 0.0 8.7 NNW 31
## 274 2015-08-01 -2.8 14.1 0.0 6.8 WNW 48
## 275 2015-08-02 3.0 9.7 1.0 0.7 W 65
## 276 2015-08-03 4.4 11.5 6.6 9.3 WNW 57
## 277 2015-08-04 2.3 12.8 0.0 9.6 WNW 35
## 278 2015-08-05 -2.0 12.3 0.0 5.8 W 31
## 279 2015-08-06 -1.9 10.9 0.0 4.2 S 50
## 280 2015-08-07 4.8 14.1 4.0 8.3 S 48
## 281 2015-08-08 -0.6 11.1 0.0 5.0 NNW 41
## 282 2015-08-09 3.1 12.5 1.2 7.2 N 43
## 283 2015-08-10 -2.9 9.6 0.0 7.3 NW 43
## 284 2015-08-11 -3.5 7.6 0.4 4.7 NW 50
## 285 2015-08-12 -0.3 9.3 0.4 9.9 N 39
## 286 2015-08-13 0.1 10.4 0.0 7.9 WNW 59
## 287 2015-08-14 2.3 12.2 0.0 9.8 WNW 44
## 288 2015-08-15 2.1 10.7 0.0 9.4 NW 59
## 289 2015-08-16 4.6 14.7 0.0 8.4 WNW 52
## 290 2015-08-17 3.7 14.2 0.0 10.0 NNW 46
## 291 2015-08-18 -1.3 11.6 0.0 10.4 N 30
## 292 2015-08-19 -3.4 12.5 0.0 6.8 SSE 48
## 293 2015-08-20 -5.3 13.1 0.0 7.9 NW 33
## 294 2015-08-21 0.0 14.0 0.0 4.7 WNW 39
## 295 2015-08-22 2.4 14.1 0.0 1.8 NW 46
## 296 2015-08-23 -0.6 12.2 0.0 7.0 S 59
## 297 2015-08-24 2.3 11.6 0.0 9.5 S 54
## 298 2015-08-25 -3.7 14.4 0.0 10.4 NNW 22
## 299 2015-08-26 -0.9 14.2 0.0 7.8 WNW 31
## 300 2015-08-27 -1.5 17.3 0.0 9.0 NW 48
## 301 2015-08-28 -3.3 15.1 0.0 NA SSW 30
## 302 2015-08-29 -0.1 14.7 0.0 9.9 ENE 30
## 303 2015-08-30 -0.2 16.2 0.0 5.9 E 28
## 304 2015-08-31 0.5 16.3 0.0 4.1 NNW 39
## 305 2015-09-01 6.1 17.2 4.0 2.4 NW 59
## 306 2015-09-02 4.1 14.8 7.4 10.8 NW 46
## 307 2015-09-03 0.1 16.7 0.0 10.2 WNW 28
## 308 2015-09-04 3.2 12.1 0.0 3.9 ESE 41
## 309 2015-09-05 5.4 11.3 0.2 0.6 ENE 35
## 310 2015-09-06 5.8 12.4 0.0 0.0 SE 26
## 311 2015-09-07 6.3 16.1 0.0 2.9 S 35
## 312 2015-09-08 -0.9 16.7 0.0 8.6 NW 35
## 313 2015-09-09 0.2 15.5 1.0 9.4 SE 31
## 314 2015-09-10 -3.7 14.7 0.0 10.9 SSE 43
## 315 2015-09-11 -2.7 15.2 0.0 9.7 N 30
## 316 2015-09-12 -2.5 16.6 0.0 9.9 NW 31
## 317 2015-09-13 -0.5 21.6 0.0 9.9 NW 48
## 318 2015-09-14 9.0 25.5 0.0 10.2 NW 50
## 319 2015-09-15 13.1 19.4 9.8 6.0 NNW 67
## 320 2015-09-16 8.7 19.7 1.6 8.0 NW 98
## 321 2015-09-17 3.9 13.2 3.4 11.0 WNW 65
## 322 2015-09-18 0.7 14.1 0.0 9.0 ENE 20
## 323 2015-09-19 1.1 18.0 0.0 8.6 NNW 39
## 324 2015-09-20 5.1 23.3 0.0 10.3 NW 44
## 325 2015-09-21 7.5 23.3 0.0 10.9 WNW 65
## 326 2015-09-22 4.7 19.5 0.0 11.0 NNW 46
## 327 2015-09-23 3.2 21.9 0.0 5.2 NW 80
## 328 2015-09-24 7.8 16.2 17.4 7.9 NW 50
## 329 2015-09-25 2.4 17.3 0.0 11.3 E 31
## 330 2015-09-26 3.2 18.7 0.0 11.1 N 31
## 331 2015-09-27 2.5 20.9 0.0 10.6 NNW 44
## 332 2015-09-28 6.5 25.7 0.0 10.5 NNW 50
## 333 2015-09-29 14.4 24.3 0.0 11.1 WNW 52
## 334 2015-09-30 4.9 18.9 0.0 9.4 NW 44
## 335 2015-10-01 2.3 16.8 0.0 11.4 N 41
## 336 2015-10-02 1.4 20.6 0.0 11.1 N 46
## 337 2015-10-03 5.6 27.6 0.0 11.0 NW 46
## 338 2015-10-04 16.8 28.9 0.0 10.8 NNW 70
## 339 2015-10-05 14.4 20.7 7.6 4.9 NNW 33
## 340 2015-10-06 10.3 21.3 3.0 6.7 NNW 43
## 341 2015-10-07 11.2 18.0 0.0 8.4 W 65
## 342 2015-10-08 0.3 16.0 8.2 11.8 NW 57
## 343 2015-10-09 0.5 17.9 0.0 11.5 N 44
## 344 2015-10-10 0.5 20.0 0.0 11.5 NNW 31
## 345 2015-10-11 4.6 22.0 0.0 11.0 N 41
## 346 2015-10-12 8.2 22.4 0.0 11.2 NW 31
## 347 2015-10-13 4.5 23.9 0.0 11.7 NW 30
## 348 2015-10-14 6.7 26.1 0.0 7.5 SSW 70
## 349 2015-10-15 11.9 21.1 13.2 NA NW 41
## 350 2015-10-16 9.2 19.6 0.6 10.4 ENE 31
## 351 2015-10-17 4.4 21.0 0.0 12.2 NW 28
## 352 2015-10-18 5.0 24.1 0.0 12.0 NNW 52
## 353 2015-10-19 6.7 24.7 0.0 8.6 NW 43
## 354 2015-10-20 8.3 28.5 0.0 9.8 NW 46
## 355 2015-10-21 11.3 27.4 0.2 12.1 NW 52
## 356 2015-10-22 9.0 20.6 0.0 6.2 ENE 39
## 357 2015-10-23 3.4 15.0 0.8 11.7 S 70
## 358 2015-10-24 3.2 18.0 0.0 12.2 SSE 48
## 359 2015-10-25 0.9 20.7 0.0 8.4 NNW 39
## 360 2015-10-26 3.3 25.5 0.0 10.8 N 43
## 361 2015-10-27 7.9 26.1 0.0 3.5 NNW 43
## 362 2015-10-28 9.0 30.7 0.0 12.1 NNW 76
## 363 2015-10-29 7.1 28.4 0.0 12.7 N 48
## 364 2015-10-30 12.5 19.9 0.0 5.3 ESE 43
## 365 2015-10-31 12.5 26.9 0.0 7.1 NW 46
## 366 2015-11-01 12.3 30.2 0.0 12.6 NW 78
## WindDir WindSpeed Humidity Pressure Cloud Temp RainToday RainTomorrow
## 1 NW 20 29 1015.0 7 23.6 No Yes
## 2 W 17 36 1008.4 3 25.7 Yes Yes
## 3 NNE 6 69 1007.2 7 20.2 Yes Yes
## 4 W 24 56 1007.0 7 14.1 Yes Yes
## 5 ESE 28 49 1018.5 7 15.4 Yes No
## 6 E 24 57 1021.7 5 14.8 No No
## 7 ESE 26 47 1022.2 6 17.3 No No
## 8 E 24 57 1024.2 7 15.5 No No
## 9 ENE 17 48 1022.7 7 18.9 No Yes
## 10 ESE 6 32 1020.7 1 21.7 Yes No
## 11 NW 9 34 1021.1 2 24.0 No No
## 12 NW 15 35 1019.9 3 26.0 No No
## 13 NW 7 29 1017.1 1 27.1 No No
## 14 W 20 20 1013.1 4 30.7 No No
## 15 W 20 16 1013.7 1 30.4 No No
## 16 WSW 9 22 1012.8 3 30.7 No No
## 17 W 19 23 1009.8 6 29.8 No Yes
## 18 NE 11 26 1013.0 5 28.6 Yes No
## 19 W 17 25 1013.3 3 31.2 No No
## 20 NNW 13 27 1013.7 1 32.0 No No
## 21 NW 31 26 1006.5 5 32.8 No No
## 22 E 11 72 1008.9 8 18.3 No Yes
## 23 SE 13 79 1014.9 8 16.8 Yes No
## 24 NE 9 57 1019.2 5 22.8 No No
## 25 NE 15 31 1018.6 2 27.3 No No
## 26 E 22 48 1016.5 4 25.1 No No
## 27 E 17 55 1018.6 7 21.2 No No
## 28 NNE 11 31 1014.8 7 26.7 No No
## 29 SE 17 80 1017.1 7 19.7 No No
## 30 S 6 49 1013.3 7 23.2 No Yes
## 31 S 20 90 1014.1 8 16.3 Yes Yes
## 32 SW 9 46 1009.5 2 25.2 Yes No
## 33 NW 35 60 1004.6 7 19.9 No Yes
## 34 WNW 26 40 1006.3 2 25.1 Yes No
## 35 E 30 63 1015.3 1 20.5 No No
## 36 ESE 9 54 1016.1 7 24.5 No No
## 37 N 6 74 1011.5 7 22.6 No Yes
## 38 N 13 42 1011.4 1 26.3 Yes No
## 39 W 24 24 1008.5 7 28.6 No No
## 40 WNW 6 37 1010.4 7 22.9 No No
## 41 E 15 63 1017.4 6 16.4 No No
## 42 E 24 51 1019.6 5 19.4 No No
## 43 E 20 49 1019.3 7 19.2 No No
## 44 N 11 37 1012.5 2 25.0 No No
## 45 WNW 13 36 1010.2 8 29.1 No Yes
## 46 NE 7 86 1008.6 8 20.0 Yes Yes
## 47 ESE 20 40 1016.8 4 20.8 Yes No
## 48 E 20 43 1018.3 7 19.8 No No
## 49 ENE 6 54 1015.6 8 20.0 No Yes
## 50 NW 13 74 1014.1 7 20.4 Yes Yes
## 51 NW 22 48 1008.3 7 28.2 Yes Yes
## 52 WNW 30 62 996.8 3 19.6 Yes Yes
## 53 N 20 49 1009.1 7 18.8 Yes No
## 54 WNW 13 43 1009.7 4 22.5 No Yes
## 55 NE 11 52 1019.1 3 21.0 Yes No
## 56 NNW 19 35 1018.0 1 23.9 No No
## 57 NNW 48 64 1014.3 7 19.0 No Yes
## 58 NW 13 44 1013.4 5 27.4 Yes No
## 59 N 7 30 1014.2 2 30.3 No No
## 60 ESE 22 18 1015.0 1 34.3 No No
## 61 NE 9 20 1015.6 1 32.2 No No
## 62 W 11 20 1011.6 6 31.8 No No
## 63 WSW 9 14 1008.7 1 33.6 No No
## 64 ESE 24 55 1016.3 7 22.3 No No
## 65 ESE 26 45 1013.0 7 23.9 No No
## 66 E 15 40 1007.4 2 26.8 No No
## 67 NNW 19 34 1003.3 1 31.9 No No
## 68 NW 11 36 1009.5 1 31.3 No No
## 69 N 9 44 1013.4 1 28.0 No No
## 70 ENE 11 45 1015.9 1 27.9 No No
## 71 NW 11 25 1013.3 1 32.2 No No
## 72 NW 19 24 1006.5 1 34.5 No No
## 73 WNW 17 28 1003.0 2 34.0 No Yes
## 74 W 24 35 1001.8 3 31.8 Yes No
## 75 ENE 19 57 1012.3 6 21.6 No No
## 76 NW 15 26 1009.0 1 31.7 No No
## 77 NNE 20 62 1006.1 7 23.5 No Yes
## 78 ESE 28 42 1015.0 1 23.9 Yes No
## 79 ESE 19 55 1015.8 8 19.4 No Yes
## 80 NNE 13 88 1006.0 8 18.6 Yes Yes
## 81 WNW 28 71 1004.0 8 21.9 Yes No
## 82 ESE 22 58 1012.1 7 18.6 No No
## 83 S 7 46 1016.8 2 22.2 No No
## 84 E 7 38 1019.2 4 22.7 No No
## 85 NE 11 29 1018.1 6 26.3 No No
## 86 NE 17 32 1016.9 7 24.6 No No
## 87 SSW 7 28 1012.4 5 28.3 No No
## 88 WNW 26 28 1009.5 4 30.7 No No
## 89 NW 24 18 1012.0 1 32.1 No No
## 90 W 11 22 1014.6 1 32.3 No No
## 91 W 13 29 1013.7 6 33.1 No Yes
## 92 NNW 13 49 1012.8 8 26.3 Yes Yes
## 93 ESE 11 49 1017.1 7 22.9 Yes No
## 94 NNE 11 44 1014.5 2 27.0 No No
## 95 ESE 17 38 1012.8 7 29.1 No Yes
## 96 ENE 13 76 1011.5 8 22.1 Yes Yes
## 97 SSE 11 71 1007.8 8 21.5 Yes No
## 98 WNW 24 41 997.5 7 26.5 No No
## 99 NNW 20 76 998.9 7 20.3 No Yes
## 100 ESE 20 58 1005.0 7 18.7 Yes No
## 101 S 17 51 1006.8 6 18.7 No No
## 102 W 13 37 1011.4 7 21.4 No No
## 103 NE 13 34 1011.7 5 24.2 No Yes
## 104 WNW 17 60 1006.8 5 22.6 Yes Yes
## 105 SSE 15 73 1011.0 8 16.8 Yes No
## 106 SE 9 37 1015.1 1 22.0 No No
## 107 E 7 32 1016.7 1 24.3 No No
## 108 E 19 40 1020.0 1 24.7 No No
## 109 NNE 13 46 1021.4 1 22.5 No No
## 110 NNE 11 42 1017.4 4 24.1 No No
## 111 SE 15 38 1012.8 2 26.1 No No
## 112 WNW 9 31 1009.1 7 28.6 No Yes
## 113 N 7 56 1008.4 7 24.0 Yes Yes
## 114 W 28 42 1002.3 5 27.4 Yes No
## 115 WNW 26 32 1005.4 1 24.5 No No
## 116 WNW 30 34 1007.2 1 22.9 No No
## 117 WSW 7 35 1014.3 2 24.3 No No
## 118 NW 17 27 1014.4 6 27.0 No No
## 119 W 30 25 1009.1 6 26.8 No No
## 120 SE 13 78 1009.9 7 15.3 No Yes
## 121 S 17 34 1014.5 1 16.8 Yes No
## 122 SSE 15 31 1019.3 1 20.0 No No
## 123 WNW 11 37 1023.2 2 22.1 No No
## 124 WNW 9 28 1020.4 1 25.5 No No
## 125 WNW 7 28 1018.2 7 27.0 No No
## 126 WSW 6 35 1022.2 1 26.2 No No
## 127 NNE 9 24 1019.3 3 30.0 No No
## 128 ENE 9 34 1017.7 7 27.7 No Yes
## 129 NNW 9 39 1020.7 7 24.9 Yes No
## 130 NNE 11 33 1023.1 1 27.0 No No
## 131 W 9 28 1020.4 1 30.1 No No
## 132 ENE 7 18 1019.3 3 32.7 No No
## 133 WSW 28 23 1017.6 5 30.7 No No
## 134 NNW 7 18 1017.7 1 31.7 No No
## 135 W 13 15 1019.1 1 32.7 No No
## 136 ESE 4 15 1019.3 2 34.1 No No
## 137 WNW 6 17 1020.7 2 30.5 No No
## 138 NNW 13 22 1020.6 0 28.8 No No
## 139 WNW 19 30 1018.8 1 29.2 No No
## 140 NNE 15 48 1018.7 4 24.5 No No
## 141 WSW 26 35 1009.4 7 27.6 No No
## 142 ESE 17 62 1019.3 8 13.9 No No
## 143 ESE 17 64 1021.8 8 17.9 No No
## 144 SW 7 44 1019.3 6 24.2 No No
## 145 WNW 19 68 1015.4 7 21.1 No Yes
## 146 N 20 93 1006.5 8 16.6 Yes Yes
## 147 W 20 50 1008.4 4 17.4 Yes No
## 148 N 17 36 1012.6 2 17.4 No No
## 149 WNW 19 35 1015.0 3 17.2 No No
## 150 NW 22 30 1011.3 6 18.2 No No
## 151 WNW 31 34 1009.3 2 18.1 No No
## 152 W 26 42 1013.0 5 16.5 No No
## 153 WNW 11 34 1021.2 1 21.2 No No
## 154 NW 37 26 1010.5 8 22.5 No Yes
## 155 W 33 40 1012.7 3 13.7 Yes No
## 156 WSW 7 33 1019.1 1 17.6 No No
## 157 NNW 7 27 1022.3 1 20.5 No No
## 158 NNW 11 35 1024.1 5 20.8 No No
## 159 ENE 11 48 1024.0 5 19.5 No No
## 160 SE 9 45 1025.4 4 17.8 No No
## 161 WNW 6 49 1021.8 4 18.6 No No
## 162 N 6 28 1019.2 1 22.2 No No
## 163 WSW 7 29 1016.9 1 22.4 No No
## 164 WNW 11 32 1015.8 3 23.7 No Yes
## 165 NW 15 56 1013.8 2 19.1 Yes Yes
## 166 SSE 20 40 1019.6 1 17.9 Yes No
## 167 S 9 36 1023.9 2 20.4 No No
## 168 SE 13 39 1024.4 1 18.8 No No
## 169 NW 7 44 1023.3 2 20.4 No No
## 170 ENE 11 43 1024.1 6 19.1 No No
## 171 ESE 22 51 1027.4 7 15.2 No No
## 172 ESE 30 65 1024.2 7 15.6 No No
## 173 SSE 7 34 1021.0 2 19.8 No No
## 174 E 22 49 1023.5 6 17.7 No No
## 175 ESE 7 43 1022.2 5 18.1 No No
## 176 NE 9 55 1019.8 4 17.6 No No
## 177 NW 7 42 1014.3 6 20.6 No No
## 178 WNW 20 34 1006.7 7 20.2 No No
## 179 NW 31 51 997.7 6 16.6 No Yes
## 180 WNW 22 60 1008.1 6 8.8 Yes No
## 181 NNW 9 40 1019.6 1 13.2 No No
## 182 N 19 40 1020.5 7 13.9 No No
## 183 NNW 26 54 1018.5 7 12.4 No No
## 184 WNW 28 38 1017.3 2 15.9 No No
## 185 W 13 42 1017.4 1 16.2 No No
## 186 NNW 15 42 1018.5 2 15.4 No No
## 187 WNW 19 41 1015.8 5 18.5 No No
## 188 NW 26 53 1013.8 7 15.4 No No
## 189 WNW 30 43 1013.5 1 16.5 No No
## 190 NW 9 44 1018.9 1 16.9 No No
## 191 N 9 36 1020.3 1 20.7 No No
## 192 NNW 9 41 1020.0 1 20.9 No No
## 193 NE 11 52 1021.5 7 17.2 No No
## 194 NNW 15 47 1020.3 1 18.8 No No
## 195 NW 15 34 1021.4 2 18.6 No No
## 196 NNW 20 44 1021.0 3 17.8 No No
## 197 NW 20 40 1018.7 2 17.7 No Yes
## 198 NW 15 69 1013.7 7 15.2 Yes No
## 199 NW 24 78 1005.9 7 7.3 No No
## 200 WNW 26 53 1008.3 6 13.3 No No
## 201 WNW 24 36 1014.3 1 16.7 No No
## 202 WNW 24 52 1018.6 1 16.2 No No
## 203 W 7 47 1022.9 2 16.6 No No
## 204 E 6 43 1026.0 1 13.8 No No
## 205 SSW 6 49 1024.8 1 14.5 No No
## 206 SSW 6 43 1023.5 1 13.9 No No
## 207 NNW 15 48 1021.8 5 17.2 No Yes
## 208 W 6 50 1023.1 4 17.9 Yes Yes
## 209 NW 13 55 1022.3 1 17.7 Yes No
## 210 NW 6 50 1024.7 4 16.3 No No
## 211 WNW 7 45 1029.6 1 17.3 No No
## 212 NNW 15 46 1028.7 1 17.4 No No
## 213 N 7 38 1027.4 3 18.2 No No
## 214 ENE 7 67 1028.9 7 13.9 No No
## 215 NNE 6 67 1027.1 7 15.5 No No
## 216 ESE 11 86 1027.2 8 13.6 No Yes
## 217 SE 20 65 1025.7 7 13.3 Yes No
## 218 S 20 65 1023.4 7 14.8 No No
## 219 NNE 4 42 1022.1 1 16.2 No No
## 220 ESE 11 42 1027.0 1 14.5 No No
## 221 ENE 13 70 1031.7 7 13.0 No No
## 222 NE 19 65 1027.9 7 14.5 No Yes
## 223 <NA> 0 94 1024.3 8 11.6 Yes Yes
## 224 NW 17 65 1022.1 7 13.7 Yes No
## 225 WNW 24 48 1019.7 1 14.7 No No
## 226 WNW 28 58 1014.1 2 11.1 No No
## 227 S 24 49 1025.6 1 11.0 No No
## 228 SSW 26 57 1026.3 2 13.8 No No
## 229 ESE 9 51 1024.8 2 16.0 No No
## 230 NNE 7 58 1025.5 1 14.9 No No
## 231 NNW 9 70 1023.5 7 15.0 No No
## 232 SSE 7 63 1019.7 7 14.8 No Yes
## 233 WNW 7 86 1019.2 7 11.3 Yes No
## 234 WNW 19 59 1021.0 6 12.1 No No
## 235 SE 9 44 1025.7 4 12.5 No No
## 236 N 15 53 1022.1 7 12.3 No No
## 237 NW 28 69 1024.2 6 11.7 No No
## 238 WNW 28 54 1021.9 1 11.3 No No
## 239 WNW 28 48 1020.4 1 11.5 No No
## 240 NNW 24 51 1025.0 1 12.7 No No
## 241 NW 9 41 1026.0 3 14.5 No No
## 242 N 22 38 1020.9 6 14.6 No No
## 243 NNW 28 68 1010.2 7 12.9 No Yes
## 244 W 33 56 1012.3 1 11.1 Yes No
## 245 WNW 30 53 1014.0 1 12.3 No No
## 246 NNW 20 53 1021.9 1 11.1 No No
## 247 NE 13 52 1030.0 6 10.2 No No
## 248 WNW 2 55 1028.9 2 12.6 No No
## 249 NNW 22 59 1026.3 5 13.6 No No
## 250 N 13 96 1021.1 8 8.6 No Yes
## 251 NW 15 72 1019.6 6 7.4 Yes No
## 252 NW 15 68 1016.8 6 8.0 No No
## 253 NW 35 85 1010.5 7 6.9 No Yes
## 254 WNW 31 66 1018.2 3 7.1 Yes No
## 255 NNW 7 54 1022.7 7 9.9 No No
## 256 NW 15 69 1021.9 7 10.7 No No
## 257 NNW 22 51 1019.0 1 15.9 No No
## 258 NNW 17 46 1020.1 7 13.3 No No
## 259 NNW 9 62 1020.8 7 12.1 No No
## 260 NNW 24 55 1013.9 3 11.0 No No
## 261 WNW 33 73 1009.4 5 8.2 No Yes
## 262 NW 22 48 1014.9 3 10.7 Yes No
## 263 NE 6 87 1009.0 8 8.7 No Yes
## 264 WNW 31 56 1010.3 3 11.2 Yes No
## 265 SSW 28 33 1025.8 1 11.0 No No
## 266 ESE 11 48 1031.1 5 10.1 No No
## 267 E 13 51 1027.4 5 10.8 No No
## 268 SE 13 25 1020.9 1 12.3 No No
## 269 WNW 19 50 1015.3 7 10.9 No No
## 270 WSW 13 66 1010.0 7 7.8 No Yes
## 271 S 37 56 1014.9 4 9.6 Yes No
## 272 S 22 49 1016.8 1 11.2 No No
## 273 NNW 15 48 1014.6 1 11.5 No No
## 274 WNW 26 38 1012.9 7 12.8 No No
## 275 NW 28 82 1001.3 7 8.6 No Yes
## 276 WNW 31 56 1014.9 1 10.5 Yes No
## 277 WNW 24 48 1018.1 1 11.6 No No
## 278 W 19 60 1018.3 7 9.1 No No
## 279 SSW 26 72 1019.2 8 7.2 No Yes
## 280 SSE 22 48 1017.6 1 13.6 Yes No
## 281 N 26 78 1015.9 7 5.7 No Yes
## 282 N 30 62 1019.1 2 11.3 Yes No
## 283 NW 24 70 1019.0 6 8.1 No No
## 284 NW 24 68 1012.6 6 5.1 No No
## 285 N 30 60 1016.6 1 8.3 No No
## 286 WNW 24 63 1020.1 6 8.6 No No
## 287 NW 30 41 1022.4 1 10.4 No No
## 288 WNW 39 45 1018.2 1 9.5 No No
## 289 NW 33 51 1012.4 3 12.0 No No
## 290 WSW 28 27 1011.8 1 13.5 No No
## 291 NNW 17 35 1022.0 1 10.8 No No
## 292 WNW 30 30 1021.8 7 11.2 No No
## 293 NNW 20 47 1025.6 6 12.2 No No
## 294 WNW 24 36 1024.4 7 12.4 No No
## 295 NW 30 27 1017.8 8 13.2 No No
## 296 S 26 44 1016.8 5 10.7 No No
## 297 ESE 17 38 1025.5 1 11.1 No No
## 298 NNW 11 28 1028.0 0 14.0 No No
## 299 N 19 34 1024.4 6 12.8 No No
## 300 WNW 26 23 1020.3 7 15.8 No No
## 301 SE 13 23 1025.5 1 14.4 No No
## 302 NE 15 43 1025.9 5 12.3 No No
## 303 ENE 20 45 1022.9 6 14.6 No No
## 304 WSW 6 45 1017.5 8 15.4 No Yes
## 305 WNW 15 85 1010.4 7 12.6 Yes Yes
## 306 W 28 34 1021.7 1 14.3 Yes No
## 307 NNE 13 44 1024.8 4 14.9 No No
## 308 SE 20 51 1033.2 5 11.1 No No
## 309 ESE 17 61 1031.9 7 10.2 No No
## 310 ESE 13 73 1023.5 8 10.8 No No
## 311 S 24 33 1016.2 7 15.7 No No
## 312 NW 22 33 1013.9 7 15.5 No No
## 313 WNW 11 37 1018.2 1 15.3 No No
## 314 N 22 25 1020.9 0 13.4 No No
## 315 WNW 20 35 1017.9 2 14.9 No No
## 316 N 20 20 1013.9 1 16.3 No No
## 317 NW 26 27 1010.9 5 21.5 No No
## 318 NW 26 31 1011.4 1 25.1 No Yes
## 319 NW 30 43 1006.0 1 18.2 Yes Yes
## 320 NNW 52 33 1001.5 6 18.5 Yes Yes
## 321 WNW 31 33 1017.6 1 12.2 Yes No
## 322 NNW 7 43 1022.1 1 13.7 No No
## 323 NNW 28 36 1015.6 1 17.8 No No
## 324 NW 28 30 1011.7 1 22.4 No No
## 325 NW 41 15 1010.9 0 21.3 No No
## 326 NNW 33 25 1015.1 0 18.3 No No
## 327 NW 20 50 1006.5 8 21.0 No Yes
## 328 N 22 44 1017.8 1 14.3 Yes No
## 329 SW 6 33 1027.7 1 16.5 No No
## 330 NNW 13 32 1026.9 1 18.1 No No
## 331 WNW 26 35 1020.6 6 20.0 No No
## 332 NW 24 25 1016.4 1 24.7 No No
## 333 NW 30 25 1009.9 1 23.0 No No
## 334 NW 22 32 1013.9 7 16.0 No No
## 335 NNW 28 34 1017.0 1 16.3 No No
## 336 N 30 16 1015.4 1 19.5 No No
## 337 NW 28 21 1014.1 0 26.7 No No
## 338 NW 41 22 1011.8 1 28.4 No Yes
## 339 NNW 19 65 1013.2 4 19.3 Yes Yes
## 340 N 19 46 1013.6 1 19.8 Yes No
## 341 W 33 40 1005.3 4 16.2 No Yes
## 342 N 28 45 1013.3 1 14.6 Yes No
## 343 NNW 26 33 1017.5 1 16.6 No No
## 344 N 9 22 1024.2 1 18.8 No No
## 345 N 19 25 1024.9 2 21.4 No No
## 346 NW 17 30 1023.8 3 20.6 No No
## 347 NNW 11 27 1021.5 4 22.3 No No
## 348 NNW 33 47 1016.0 7 23.2 No Yes
## 349 N 24 61 1016.7 3 19.4 Yes No
## 350 NNW 7 42 1019.7 4 18.4 No No
## 351 NW 9 30 1022.3 1 19.2 No No
## 352 NNW 26 34 1020.7 1 21.9 No No
## 353 NW 20 31 1022.2 7 23.7 No No
## 354 NW 26 30 1019.8 6 27.4 No No
## 355 NW 31 20 1017.5 1 26.3 No No
## 356 SW 11 28 1018.6 5 18.5 No No
## 357 S 37 24 1023.1 5 14.3 No No
## 358 S 15 25 1022.8 2 16.3 No No
## 359 N 17 29 1018.4 8 19.1 No No
## 360 NNW 19 16 1014.6 3 24.8 No No
## 361 WNW 19 20 1014.2 8 25.9 No No
## 362 NW 50 15 1010.8 3 30.0 No No
## 363 NNW 19 22 1016.9 1 28.2 No No
## 364 ENE 9 47 1022.8 2 18.3 No No
## 365 WNW 28 39 1016.2 7 25.9 No No
## 366 WNW 35 13 1009.2 1 28.6 No No
length(weather$Date) # ๋ฐ์ดํฐ ๊ฐ์ฒด์ ์์๋ค์ ๊ฐ์
## [1] 366
names(weather) # ๋ฐ์ดํฐ ๊ฐ์ฒด ๊ตฌ์ฑ์์ ์ด๋ฆ
## [1] "Date" "MinTemp" "MaxTemp" "Rainfall"
## [5] "Sunshine" "WindGustDir" "WindGustSpeed" "WindDir"
## [9] "WindSpeed" "Humidity" "Pressure" "Cloud"
## [13] "Temp" "RainToday" "RainTomorrow"
class(weather) # ๋ฐ์ดํฐ ๊ฐ์ฒด ๊ตฌ์ฑ์์์ ์์ฑ
## [1] "data.frame"
attributes(weather) # ๋ณ์ ์์ฑ ๋ณด๊ธฐ
## $names
## [1] "Date" "MinTemp" "MaxTemp" "Rainfall"
## [5] "Sunshine" "WindGustDir" "WindGustSpeed" "WindDir"
## [9] "WindSpeed" "Humidity" "Pressure" "Cloud"
## [13] "Temp" "RainToday" "RainTomorrow"
##
## $class
## [1] "data.frame"
##
## $row.names
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## [18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## [35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## [52] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## [69] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [86] 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
## [103] 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
## [120] 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
## [137] 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
## [154] 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
## [171] 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
## [188] 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
## [205] 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
## [222] 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
## [239] 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
## [256] 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
## [273] 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
## [290] 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
## [307] 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
## [324] 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
## [341] 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
## [358] 358 359 360 361 362 363 364 365 366
summary(weather) # ๋ฐ์ดํฐ ์์ฝ ๋ณด๊ธฐ
## Date MinTemp MaxTemp Rainfall
## Length:366 Min. :-5.300 Min. : 7.60 Min. : 0.000
## Class :character 1st Qu.: 2.300 1st Qu.:15.03 1st Qu.: 0.000
## Mode :character Median : 7.450 Median :19.65 Median : 0.000
## Mean : 7.266 Mean :20.55 Mean : 1.428
## 3rd Qu.:12.500 3rd Qu.:25.50 3rd Qu.: 0.200
## Max. :20.900 Max. :35.80 Max. :39.800
##
## Sunshine WindGustDir WindGustSpeed WindDir
## Min. : 0.000 Length:366 Min. :13.00 Length:366
## 1st Qu.: 5.950 Class :character 1st Qu.:31.00 Class :character
## Median : 8.600 Mode :character Median :39.00 Mode :character
## Mean : 7.909 Mean :39.84
## 3rd Qu.:10.500 3rd Qu.:46.00
## Max. :13.600 Max. :98.00
## NA's :3 NA's :2
## WindSpeed Humidity Pressure Cloud
## Min. : 0.00 Min. :13.00 Min. : 996.8 Min. :0.000
## 1st Qu.:11.00 1st Qu.:32.25 1st Qu.:1012.8 1st Qu.:1.000
## Median :17.00 Median :43.00 Median :1017.4 Median :4.000
## Mean :17.99 Mean :44.52 Mean :1016.8 Mean :4.025
## 3rd Qu.:24.00 3rd Qu.:55.00 3rd Qu.:1021.5 3rd Qu.:7.000
## Max. :52.00 Max. :96.00 Max. :1033.2 Max. :8.000
##
## Temp RainToday RainTomorrow
## Min. : 5.10 Length:366 Length:366
## 1st Qu.:14.15 Class :character Class :character
## Median :18.55 Mode :character Mode :character
## Mean :19.23
## 3rd Qu.:24.00
## Max. :34.50
##
dim(weather) # ๋ฐ์ดํฐ ๊ฐ์ฒด์ ์ฐจ์๋ณด๊ธฐ
## [1] 366 15
head(weather) # ์์ 6๊ฐ ๊ด์ธก์น ๋ฏธ๋ฆฌ๋ณด๊ธฐ
## Date MinTemp MaxTemp Rainfall Sunshine WindGustDir WindGustSpeed
## 1 2014-11-01 8.0 24.3 0.0 6.3 NW 30
## 2 2014-11-02 14.0 26.9 3.6 9.7 ENE 39
## 3 2014-11-03 13.7 23.4 3.6 3.3 NW 85
## 4 2014-11-04 13.3 15.5 39.8 9.1 NW 54
## 5 2014-11-05 7.6 16.1 2.8 10.6 SSE 50
## 6 2014-11-06 6.2 16.9 0.0 8.2 SE 44
## WindDir WindSpeed Humidity Pressure Cloud Temp RainToday RainTomorrow
## 1 NW 20 29 1015.0 7 23.6 No Yes
## 2 W 17 36 1008.4 3 25.7 Yes Yes
## 3 NNE 6 69 1007.2 7 20.2 Yes Yes
## 4 W 24 56 1007.0 7 14.1 Yes Yes
## 5 ESE 28 49 1018.5 7 15.4 Yes No
## 6 E 24 57 1021.7 5 14.8 No No
tail(weather) # ํ์ 6๊ฐ ๊ด์ธก์น ๋ฏธ๋ฆฌ๋ณด๊ธฐ
## Date MinTemp MaxTemp Rainfall Sunshine WindGustDir WindGustSpeed
## 361 2015-10-27 7.9 26.1 0 3.5 NNW 43
## 362 2015-10-28 9.0 30.7 0 12.1 NNW 76
## 363 2015-10-29 7.1 28.4 0 12.7 N 48
## 364 2015-10-30 12.5 19.9 0 5.3 ESE 43
## 365 2015-10-31 12.5 26.9 0 7.1 NW 46
## 366 2015-11-01 12.3 30.2 0 12.6 NW 78
## WindDir WindSpeed Humidity Pressure Cloud Temp RainToday RainTomorrow
## 361 WNW 19 20 1014.2 8 25.9 No No
## 362 NW 50 15 1010.8 3 30.0 No No
## 363 NNW 19 22 1016.9 1 28.2 No No
## 364 ENE 9 47 1022.8 2 18.3 No No
## 365 WNW 28 39 1016.2 7 25.9 No No
## 366 WNW 35 13 1009.2 1 28.6 No No
str(weather) # ๋ฐ์ดํฐ ๊ตฌ์กฐ, ๋ณ์ ๊ฐ์, ๋ณ์ ๋ช
, ๊ด์ฐฐ์น ๊ฐ์, ๊ด์ฐฐ์น์ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
## 'data.frame': 366 obs. of 15 variables:
## $ Date : chr "2014-11-01" "2014-11-02" "2014-11-03" "2014-11-04" ...
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ MaxTemp : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 17 19.5 22.8 ...
## $ Rainfall : num 0 3.6 3.6 39.8 2.8 0 0.2 0 0 16.2 ...
## $ Sunshine : num 6.3 9.7 3.3 9.1 10.6 8.2 8.4 4.6 4.1 7.7 ...
## $ WindGustDir : chr "NW" "ENE" "NW" "NW" ...
## $ WindGustSpeed: int 30 39 85 54 50 44 43 41 48 31 ...
## $ WindDir : chr "NW" "W" "NNE" "W" ...
## $ WindSpeed : int 20 17 6 24 28 24 26 24 17 6 ...
## $ Humidity : int 29 36 69 56 49 57 47 57 48 32 ...
## $ Pressure : num 1015 1008 1007 1007 1018 ...
## $ Cloud : int 7 3 7 7 7 5 6 7 7 1 ...
## $ Temp : num 23.6 25.7 20.2 14.1 15.4 14.8 17.3 15.5 18.9 21.7 ...
## $ RainToday : chr "No" "Yes" "Yes" "Yes" ...
## $ RainTomorrow : chr "Yes" "Yes" "Yes" "Yes" ...
weather_num <- weather[, c(-1, -6, -8, -14, -15)]
str(weather_num)
## 'data.frame': 366 obs. of 10 variables:
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ MaxTemp : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 17 19.5 22.8 ...
## $ Rainfall : num 0 3.6 3.6 39.8 2.8 0 0.2 0 0 16.2 ...
## $ Sunshine : num 6.3 9.7 3.3 9.1 10.6 8.2 8.4 4.6 4.1 7.7 ...
## $ WindGustSpeed: int 30 39 85 54 50 44 43 41 48 31 ...
## $ WindSpeed : int 20 17 6 24 28 24 26 24 17 6 ...
## $ Humidity : int 29 36 69 56 49 57 47 57 48 32 ...
## $ Pressure : num 1015 1008 1007 1007 1018 ...
## $ Cloud : int 7 3 7 7 7 5 6 7 7 1 ...
## $ Temp : num 23.6 25.7 20.2 14.1 15.4 14.8 17.3 15.5 18.9 21.7 ...
# ๊ฒฐ์ธก์น ํ์ธ
colSums(is.na(weather_num))
## MinTemp MaxTemp Rainfall Sunshine WindGustSpeed
## 0 0 0 3 2
## WindSpeed Humidity Pressure Cloud Temp
## 0 0 0 0 0
# cor(weather) # numeric ๋ฐ์ดํฐ๋ง ๊ฐ๋ฅ
cor(weather_num, method = "pearson") # ์๊ด๊ด๊ณ ํ์ธ
## MinTemp MaxTemp Rainfall Sunshine WindGustSpeed
## MinTemp 1.00000000 0.75247079 0.20193872 NA NA
## MaxTemp 0.75247079 1.00000000 -0.07355958 NA NA
## Rainfall 0.20193872 -0.07355958 1.00000000 NA NA
## Sunshine NA NA NA 1 NA
## WindGustSpeed NA NA NA NA 1
## WindSpeed -0.06592182 -0.16787312 0.05600849 NA NA
## Humidity -0.04070877 -0.53332688 0.28901341 NA NA
## Pressure -0.49800692 -0.37939373 -0.25021761 NA NA
## Cloud 0.11839736 -0.13599065 0.12779204 NA NA
## Temp 0.72273050 0.98926079 -0.08749319 NA NA
## WindSpeed Humidity Pressure Cloud Temp
## MinTemp -0.06592182 -0.04070877 -0.49800692 0.11839736 0.72273050
## MaxTemp -0.16787312 -0.53332688 -0.37939373 -0.13599065 0.98926079
## Rainfall 0.05600849 0.28901341 -0.25021761 0.12779204 -0.08749319
## Sunshine NA NA NA NA NA
## WindGustSpeed NA NA NA NA NA
## WindSpeed 1.00000000 -0.02636775 -0.33732535 0.00720724 -0.18756965
## Humidity -0.02636775 1.00000000 -0.01005189 0.51010790 -0.58167615
## Pressure -0.33732535 -0.01005189 1.00000000 -0.14383718 -0.34548531
## Cloud 0.00720724 0.51010790 -0.14383718 1.00000000 -0.17281423
## Temp -0.18756965 -0.58167615 -0.34548531 -0.17281423 1.00000000
weather_num2 <- na.omit(weather_num) # ๊ฒฐ์ธก์น๋ฅผ ํฌํจํ ํ ์ ๊ฑฐ
colSums(is.na(weather_num2)) # ๊ฒฐ์ธก์น ์ ๊ฑฐ ํ์ธ
## MinTemp MaxTemp Rainfall Sunshine WindGustSpeed
## 0 0 0 0 0
## WindSpeed Humidity Pressure Cloud Temp
## 0 0 0 0 0
cor(weather_num2, method = "pearson")
## MinTemp MaxTemp Rainfall Sunshine WindGustSpeed
## MinTemp 1.00000000 0.7528417 0.19629243 0.03712155 0.21563742
## MaxTemp 0.75284166 1.0000000 -0.07818860 0.45408861 0.10694128
## Rainfall 0.19629243 -0.0781886 1.00000000 -0.15068501 0.09532589
## Sunshine 0.03712155 0.4540886 -0.15068501 1.00000000 0.09584272
## WindGustSpeed 0.21563742 0.1069413 0.09532589 0.09584272 1.00000000
## WindSpeed -0.07057462 -0.1687830 0.05117158 0.07254811 0.69470706
## Humidity -0.04856916 -0.5383779 0.28666809 -0.75979510 -0.07029527
## Pressure -0.49520944 -0.3770701 -0.25125627 -0.03740636 -0.52478951
## Cloud 0.10821155 -0.1432029 0.13105977 -0.66232664 0.05052383
## Temp 0.72354652 0.9892214 -0.09172749 0.47233003 0.06968778
## WindSpeed Humidity Pressure Cloud
## MinTemp -0.070574620 -0.04856916 -0.49520944 0.108211552
## MaxTemp -0.168782971 -0.53837794 -0.37707008 -0.143202950
## Rainfall 0.051171576 0.28666809 -0.25125627 0.131059766
## Sunshine 0.072548114 -0.75979510 -0.03740636 -0.662326636
## WindGustSpeed 0.694707060 -0.07029527 -0.52478951 0.050523835
## WindSpeed 1.000000000 -0.03101386 -0.33839811 0.006244681
## Humidity -0.031013858 1.00000000 -0.01170095 0.511175462
## Pressure -0.338398109 -0.01170095 1.00000000 -0.141730139
## Cloud 0.006244681 0.51117546 -0.14173014 1.000000000
## Temp -0.188218230 -0.58636265 -0.34304952 -0.179481518
## Temp
## MinTemp 0.72354652
## MaxTemp 0.98922136
## Rainfall -0.09172749
## Sunshine 0.47233003
## WindGustSpeed 0.06968778
## WindSpeed -0.18821823
## Humidity -0.58636265
## Pressure -0.34304952
## Cloud -0.17948152
## Temp 1.00000000
# help("pairs")์์ ์ฐธ๊ณ ํ ํจ์๋ค
# ์ฐ์ ๋ ํ๋ ฌ์ ๋๊ฐ์ ์ ํ์คํ ๊ทธ๋จ์ ์ถ๊ฐํ๋ ์ฌ์ฉ์ ์ ์ ํจ์
panel.hist <- function(x, ...)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
# ๋ค์์ผ๋ก ์ฐ์ ๋ ํ๋ ฌ์ ์์ชฝ์ ์๊ด๊ณ์ ์ซ์๋ฅผ ์ง์ด๋ฃ๋ ์ฌ์ฉ์ ์ ์ ํจ์
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste0(prefix, txt)
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)
}
# ์ฐ์ ๋์ ์ ํ ํ๊ท์ ์ ์ถ๊ฐํ๋ ์ฌ์ฉ์ ์ ์ ํจ์
panel.lm <- function(x, y, col=par("col"), bg=NA, pch=par("pch"),
cex=1, col.smooth="black", ...) {
points(x, y, pch=pch, col=col, bg=bg, cex=cex)
abline(stats::lm(y~x), col=col.smooth, ...)
}
pairs(
weather_num2,
lower.panel = panel.lm,
upper.panel = panel.cor,
diag.panel = panel.hist,
pch="*",
main = "์ฐ์ ๋ ํ๋ ฌ, ์๊ด๊ณ์ , ํ์คํ ๊ทธ๋จ"
)
pairs(
weather_num2,
pch=21,
bg=rainbow(10)
)
# ๊ด๋ จ์ด ์๋ ๋ฐ์ดํฐ๋ง ๋ค์ ์ ์ฒ๋ฆฌ
weather_num3 <- weather_num2[, c(-3)]
# cor(weather_num3, method="pearson") # ๋์๋ณ์๊ฐ ๋ฑ๊ฐ์ฒ๋ ๋๋ ๋น์จ์ฒ๋ ์ผ ๋ pearson ์๊ด๊ณ์๋ฅผ ์ ์ฉ
# cor(weather_num3, method="spearman") # ์์ด์ฒ๋์ผ ๋๋ spearman ์๊ด๊ณ์๋ฅผ ์ ์ฉ
pairs(
weather_num3,
lower.panel = panel.lm,
upper.panel = panel.cor,
diag.panel = panel.hist,
pch=21,
bg=rainbow(5)
)
str(weather) # ๋ฐ์ดํฐ ๊ตฌ์กฐ, ๋ณ์ ๊ฐ์, ๋ณ์ ๋ช
, ๊ด์ฐฐ์น ๊ฐ์, ๊ด์ฐฐ์น์ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
## 'data.frame': 366 obs. of 15 variables:
## $ Date : chr "2014-11-01" "2014-11-02" "2014-11-03" "2014-11-04" ...
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ MaxTemp : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 17 19.5 22.8 ...
## $ Rainfall : num 0 3.6 3.6 39.8 2.8 0 0.2 0 0 16.2 ...
## $ Sunshine : num 6.3 9.7 3.3 9.1 10.6 8.2 8.4 4.6 4.1 7.7 ...
## $ WindGustDir : chr "NW" "ENE" "NW" "NW" ...
## $ WindGustSpeed: int 30 39 85 54 50 44 43 41 48 31 ...
## $ WindDir : chr "NW" "W" "NNE" "W" ...
## $ WindSpeed : int 20 17 6 24 28 24 26 24 17 6 ...
## $ Humidity : int 29 36 69 56 49 57 47 57 48 32 ...
## $ Pressure : num 1015 1008 1007 1007 1018 ...
## $ Cloud : int 7 3 7 7 7 5 6 7 7 1 ...
## $ Temp : num 23.6 25.7 20.2 14.1 15.4 14.8 17.3 15.5 18.9 21.7 ...
## $ RainToday : chr "No" "Yes" "Yes" "Yes" ...
## $ RainTomorrow : chr "Yes" "Yes" "Yes" "Yes" ...
# sum(is.na(weather)) # ์ ์ฒด ๊ฒฐ์ธก์น ๊ฐฏ์ ํ์ธ
# sum(is.na(weather$Sunshine)) # Sunshine ์ปฌ๋ผ์ ๊ฒฐ์ธก์น ๊ฐฏ์ ํ์ธ
# sum(is.na(weather$WindGustDir)) # WindGustDir ์ปฌ๋ผ์ ๊ฒฐ์ธก์น ๊ฐฏ์ ํ์ธ
# sum(is.na(weather$WindGustSpeed)) # WindGustSpeed ์ปฌ๋ผ์ ๊ฒฐ์ธก์น ๊ฐฏ์ ํ์ธ
# sum(is.na(weather$WindDir)) # WindDir ์ปฌ๋ผ์ ๊ฒฐ์ธก์น ๊ฐฏ์ ํ์ธ
colSums(is.na(weather)) # ํ๋ฒ์ ๊ฒฐ์ธก๊ฐ ํํฉ ํ์
ํ๋ ๋ฐฉ๋ฒ
## Date MinTemp MaxTemp Rainfall Sunshine
## 0 0 0 0 3
## WindGustDir WindGustSpeed WindDir WindSpeed Humidity
## 3 2 1 0 0
## Pressure Cloud Temp RainToday RainTomorrow
## 0 0 0 0 0
weather_df <- weather[, c(-1, -6, -8, -14)] # chr ๋ฐ์ดํฐ ํ์
์ปฌ๋ผ, Date, RainToday ์ปฌ๋ผ ์ ๊ฑฐ
str(weather_df) # ์ปฌ๋ผ ์ญ์ ํ ํ์ธ
## 'data.frame': 366 obs. of 11 variables:
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ MaxTemp : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 17 19.5 22.8 ...
## $ Rainfall : num 0 3.6 3.6 39.8 2.8 0 0.2 0 0 16.2 ...
## $ Sunshine : num 6.3 9.7 3.3 9.1 10.6 8.2 8.4 4.6 4.1 7.7 ...
## $ WindGustSpeed: int 30 39 85 54 50 44 43 41 48 31 ...
## $ WindSpeed : int 20 17 6 24 28 24 26 24 17 6 ...
## $ Humidity : int 29 36 69 56 49 57 47 57 48 32 ...
## $ Pressure : num 1015 1008 1007 1007 1018 ...
## $ Cloud : int 7 3 7 7 7 5 6 7 7 1 ...
## $ Temp : num 23.6 25.7 20.2 14.1 15.4 14.8 17.3 15.5 18.9 21.7 ...
## $ RainTomorrow : chr "Yes" "Yes" "Yes" "Yes" ...
weather_df$RainTomorrow[weather_df$RainTomorrow=="Yes"] <- 1 # Yes -> 1
weather_df$RainTomorrow[weather_df$RainTomorrow=="No"] <- 0 # Tes -> 0
weather_df$RainTomorrow <- as.numeric(weather_df$RainTomorrow) # ์์ ํ ๊ฐ์ numeric์ผ๋ก ํ๋ณํ
head(weather_df)
## MinTemp MaxTemp Rainfall Sunshine WindGustSpeed WindSpeed Humidity
## 1 8.0 24.3 0.0 6.3 30 20 29
## 2 14.0 26.9 3.6 9.7 39 17 36
## 3 13.7 23.4 3.6 3.3 85 6 69
## 4 13.3 15.5 39.8 9.1 54 24 56
## 5 7.6 16.1 2.8 10.6 50 28 49
## 6 6.2 16.9 0.0 8.2 44 24 57
## Pressure Cloud Temp RainTomorrow
## 1 1015.0 7 23.6 1
## 2 1008.4 3 25.7 1
## 3 1007.2 7 20.2 1
## 4 1007.0 7 14.1 1
## 5 1018.5 7 15.4 0
## 6 1021.7 5 14.8 0
# ๋จ์ ์์ ์ถ์ถ
idx <- sample(1:nrow(weather_df), nrow(weather_df) * 0.7) # 70%์ ๋ฐ์ดํฐ๋ง์ training ๋ฐ์ดํฐ๋ก ์ฌ
train <- weather_df[idx, ]
# train <- na.omit(train)
test <- weather_df[-idx, ]
# colSums(is.na(train))
# generalized linear model
# glm(y ~ x, data, family)
# family์ 'binomial'์ y ๋ณ์๊ฐ ์ดํญํ์ธ ๊ฒฝ์ฐ ์ง์ ํ๋ ์์ฑ ๊ฐ
weather_model <- glm(RainTomorrow ~ ., data=train, family="binomial")
# weather_model
summary(weather_model)
##
## Call:
## glm(formula = RainTomorrow ~ ., family = "binomial", data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9778 -0.4104 -0.2377 -0.1159 2.5506
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 114.25407 47.04648 2.429 0.01516 *
## MinTemp -0.03327 0.08344 -0.399 0.69004
## MaxTemp 0.09486 0.24714 0.384 0.70110
## Rainfall -0.00701 0.04652 -0.151 0.88022
## Sunshine -0.24363 0.11034 -2.208 0.02724 *
## WindGustSpeed 0.07092 0.02718 2.609 0.00908 **
## WindSpeed -0.05203 0.03590 -1.450 0.14717
## Humidity 0.04411 0.02910 1.516 0.12957
## Pressure -0.12007 0.04539 -2.645 0.00816 **
## Cloud 0.15245 0.12346 1.235 0.21688
## Temp 0.05501 0.25933 0.212 0.83201
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 223.48 on 250 degrees of freedom
## Residual deviance: 135.47 on 240 degrees of freedom
## (5 observations deleted due to missingness)
## AIC: 157.47
##
## Number of Fisher Scoring iterations: 6
# newdata=test : ์๋ก์ด ๋ฐ์ดํฐ ์
, type="response" : 0~1 ํ๋ฅ ๊ฐ์ผ๋ก ์์ธก
pred <- predict(weather_model, newdata=test, type="response")
pred # 1์ ๊ฐ๊น์ธ ์๋ก ๋น์ฌ ํ๋ฅ ์ด ๋๋ค.
## 8 13 16 17 20 26
## 0.082115121 0.017274689 0.180177640 0.301677803 0.070515284 0.112748564
## 31 32 38 39 41 46
## 0.841413738 0.162171299 0.155714814 0.147765326 0.307673241 0.911056878
## 55 61 63 64 65 66
## 0.171589945 0.023007921 0.179803984 0.598131096 0.090903154 0.108643927
## 67 72 75 76 77 80
## 0.304035101 0.297083988 0.512341304 0.103100520 0.899911646 0.921963895
## 82 84 85 86 88 93
## 0.646011883 0.026284127 0.071935995 0.112707219 0.140555257 0.164192722
## 95 99 100 102 107 121
## 0.379266690 0.971043121 0.525270786 0.178225296 0.020997980 0.018537022
## 127 134 139 143 146 147
## 0.063308913 0.074958433 0.042379658 0.295676982 0.943548288 0.155731749
## 151 154 156 157 159 164
## 0.039986232 0.760835491 0.007410535 0.005471428 0.034042100 0.115611073
## 165 166 171 180 181 185
## 0.128889500 0.007449905 0.027582548 0.417665049 0.004621378 0.015178765
## 187 189 194 197 203 205
## 0.070338936 0.020049819 0.011652736 0.015860685 0.014891827 0.006316835
## 206 211 213 214 216 223
## 0.003128058 0.003290890 0.005710666 0.047054532 0.191320641 0.607736668
## 226 228 232 233 235 237
## 0.079176540 0.012455864 0.142718991 0.410047853 0.011477871 0.078542387
## 238 243 245 256 258 259
## 0.009702368 0.755303342 0.072965528 0.179220076 0.038360628 0.088690383
## 261 267 268 269 273 275
## 0.202764501 0.007349650 0.003863110 0.061200940 0.016003944 0.951657123
## 278 279 282 288 290 291
## 0.058978945 0.256617314 0.025571361 0.010642118 0.010407592 0.001805273
## 295 296 304 305 306 307
## 0.091364840 0.096289075 0.292735732 0.934845365 0.003706873 0.006565586
## 309 311 316 320 326 327
## 0.048061538 0.073698075 0.005760850 0.778081600 0.006950789 0.965108811
## 330 341 345 351 353 357
## 0.002467565 0.267586729 0.006375774 0.003789188 0.062359355 0.011094684
## 363 366
## 0.032521701 0.178580148
# summary(pred)
# str(pred)
# ์์ธก์น : 0๊ณผ 1๋ก ๋ณํ(0.7 ๊ธฐ์ค)
result_pred <- ifelse(pred >= 0.7, 1, 0)
result_pred
## 8 13 16 17 20 26 31 32 38 39 41 46 55 61 63 64 65 66
## 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
## 67 72 75 76 77 80 82 84 85 86 88 93 95 99 100 102 107 121
## 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
## 127 134 139 143 146 147 151 154 156 157 159 164 165 166 171 180 181 185
## 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
## 187 189 194 197 203 205 206 211 213 214 216 223 226 228 232 233 235 237
## 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 238 243 245 256 258 259 261 267 268 269 273 275 278 279 282 288 290 291
## 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 295 296 304 305 306 307 309 311 316 320 326 327 330 341 345 351 353 357
## 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 363 366
## 0 0
# table(data.frame)
table(result_pred)
## result_pred
## 0 1
## 98 12
table(result_pred, test$RainTomorrow)
##
## result_pred 0 1
## 0 86 12
## 1 0 12
## result_pred 0 1
## 0 89 10
## 1 3 7
(89 + 7) / nrow(test)
## [1] 0.8727273
# Receiver Operating Characteristic
# install.packages("ROCR")
library(ROCR)
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
# ROCR ํจํค์ง ์ ๊ณต ํจ์ : prediction() -> performance
#
pr <- prediction(pred, test$RainTomorrow)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
plot(prf)
# install.packages("rpart")
library(rpart)
str(weather)
## 'data.frame': 366 obs. of 15 variables:
## $ Date : chr "2014-11-01" "2014-11-02" "2014-11-03" "2014-11-04" ...
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 8.8 8.4 ...
## $ MaxTemp : num 24.3 26.9 23.4 15.5 16.1 16.9 18.2 17 19.5 22.8 ...
## $ Rainfall : num 0 3.6 3.6 39.8 2.8 0 0.2 0 0 16.2 ...
## $ Sunshine : num 6.3 9.7 3.3 9.1 10.6 8.2 8.4 4.6 4.1 7.7 ...
## $ WindGustDir : chr "NW" "ENE" "NW" "NW" ...
## $ WindGustSpeed: int 30 39 85 54 50 44 43 41 48 31 ...
## $ WindDir : chr "NW" "W" "NNE" "W" ...
## $ WindSpeed : int 20 17 6 24 28 24 26 24 17 6 ...
## $ Humidity : int 29 36 69 56 49 57 47 57 48 32 ...
## $ Pressure : num 1015 1008 1007 1007 1018 ...
## $ Cloud : int 7 3 7 7 7 5 6 7 7 1 ...
## $ Temp : num 23.6 25.7 20.2 14.1 15.4 14.8 17.3 15.5 18.9 21.7 ...
## $ RainToday : chr "No" "Yes" "Yes" "Yes" ...
## $ RainTomorrow : chr "Yes" "Yes" "Yes" "Yes" ...
names(weather)
## [1] "Date" "MinTemp" "MaxTemp" "Rainfall"
## [5] "Sunshine" "WindGustDir" "WindGustSpeed" "WindDir"
## [9] "WindSpeed" "Humidity" "Pressure" "Cloud"
## [13] "Temp" "RainToday" "RainTomorrow"
# RainTomorrow ์ปฌ๋ผ์ y๋ณ์๋ก ์ง์
# ๋ ์จ ์์ธ๊ณผ ๊ด๋ จ์ด ์๋ Data์ RainToday ์ปฌ๋ผ์ ์ ์ธํ ๋๋จธ์ง ๋ณ์๋ฅผ x ๋ณ์๋ก ์ง์ ํ์ฌ ๋ถ๋ฅ๋ชจ๋ธ์ ์ํ
# rpart(๋ฐ์๋ณ์ ~ ์ค๋ช
๋ณ์, data)
weather.df <- rpart(RainTomorrow ~., data=weather[, c(-1, -14)], cp=0.01)
# X11() # ์ฐจํธ๋ฅผ ๋์ธ ๋ณ๋์ ์ฐฝ ์์ฑ
plot(weather.df) # ํธ๋ฆฌ ํ๋ ์ ๋ณด์
text(weather.df, use.n = T, cex=0.7) # ํ
์คํธ ์ถ๊ฐ
post(weather.df, file="") # ํ์์ ๊ณต - rpart ํจํค์ง ์ ๊ณต
weather_pred <- predict(weather.df, weather)
head(weather_pred)
## No Yes
## 1 0.9684685 0.03153153
## 2 0.8648649 0.13513514
## 3 0.3333333 0.66666667
## 4 0.8648649 0.13513514
## 5 0.9684685 0.03153153
## 6 0.9684685 0.03153153
weather_pred2 <- ifelse(weather_pred[,2] >= 0.7, 'Yes', 'No' )
table(weather_pred2, weather$RainTomorrow)
##
## weather_pred2 No Yes
## No 287 29
## Yes 13 37
(287 + 37) / nrow(weather)
## [1] 0.8852459